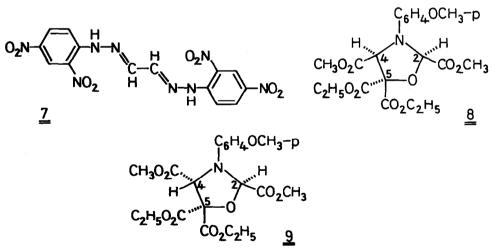

CYCLOADDITIONS OF AN AZIRIDINE VIA AZOMETHINE YLIDE TO HETEROMULTIPLE BONDS Rolf Huisgen, Victoria Martin-Ramos, and Wolfgang Scheer Institut für Organische Chemie der Universität München (Germany) (Received in UK 21 December 1970; accepted for publication 4 January 1971)

Recent reports on the cycloadditions of aziridines to heteromultiple bonds to form 5-membered heterocycles (1-5) make it desirable to publish briefly our experimental results which go back several years. 2,3-Diphenyl-1-(p-methoxy-phenyl)aziridine $(\frac{1}{2})$ has served as model substance to establish the steric course and the kinetics of the electrocyclic ring opening to azomethine ylides (6,7). The same model was used in a preliminary investigation to examine the range of applicable dipolarophiles which contain heteromultiple bonds.

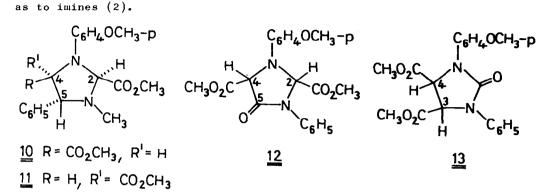
On heating $\frac{1}{2}$ with 10 equiv. of <u>benzaldehyde</u> for 48 hrs. at 120°, three diastereomeric oxazolidines were formed and separated by thick-layer chromatography (t.l.c.). N.m.r. analysis showed that the original mixture consisted of 57% of $\frac{4}{2}$ (b.p. 170-180°/0.001 Torr), 25% of $\frac{5}{2}$ (m.p. 90-92°) and 16% of $\frac{6}{2}$ (m.p.


411

No.6

116-117°) (8). N.m.r. spectra allowed a configurational assignment by using the following principles: a. A <u>cis</u>-located ester group in 2-position deshields 4-5-H more efficiently than <u>trans</u>-CO₂CH₃ does; b. 4-H is shielded by <u>cis</u>-5-C₆H₅, but deshielded by <u>trans</u>-C₆H₅; c. the τ -value of 4-CO₂CH₃ is shifted to higher field by <u>cis</u>-5-C₆H₅. J_{4,5} is without diagnostic value; it is 7.0, 6.5, 6.5 Hz for $\frac{4}{2}$ -6.

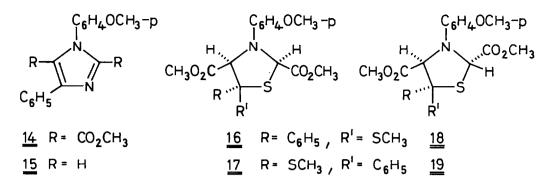
Thus, 57% of the <u>cis</u>-azomethine ylide $\frac{2}{2}$ reacted with benzaldehyde to give $\frac{4}{2}$; 41% isomerised to $\frac{3}{2}$ prior to cycloaddition. As shown earlier (9), $\frac{3}{2}$ is a more active 1,3-dipole than $\frac{2}{2}$. The oxazolidines $\frac{4}{2}-\frac{6}{2}$ with their 0,N-acetal group are stable to 2,4-dinitrophenylhydrazine in ethanolic sulphuric acid. However, after LiAlH₄ reduction of the two ester functions, glycolaldehydewas liberated by acid hydrolysis; 46% of the osazone $\frac{7}{2}$ was isolated.


<u>Diethyl mesoxalate</u> reacted with $\frac{1}{2}$ to form 75% of a 93:7 mixture of the oxazolidine $\frac{8}{2}$ (m.p. 82-83°) and $\frac{9}{2}$ (m.p. 75-76°) which were again separated by t.l.c. on silicagel. The two ester ethyl groups are non-equivalent. The ring protons 2-H and 4-H appear in the main product $\frac{8}{2}$ at τ 4.35 and 4.81 (10); as expected, the τ values are lower in the <u>trans</u>-2,4-diester $\frac{9}{2}$ (2-H 4.22, 4-H 4.51). Also

<u>8</u> and <u>9</u> afforded the glyoxal derivative <u>7</u> after reduction with LiAlH_4 and treatment with acidic 2,4-dinitrophenylhydrazine. With 93% <u>cis</u>-2,4-diester <u>8</u> in the product, the stereospecificity was higher than in the case of benzaldehyde; only 7% of the azomethine ylide <u>2</u> escaped cycloaddition and isomerised to <u>3</u>.

478

Lown et al. recently described cycloadditions of 1-alky1-2-ary1-3benzoyl-aziridines to chloral, 3-nitro- and 2,4-dinitrobenzaldehyde (4) as well



Also CN double and triple bonds are suitable dipolarophiles. <u>N-Benzyli-dene-methylamine</u> combined much more slowly with $\underline{1}$ than benzaldehyde did as is shown by 40% of reacted $\underline{1}$ after 24 hrs. at 120°; 19% of $\underline{10}$ (m.p. 101-102°) and 29% of $\underline{11}$ (16%-m.p.171°) were isolated, based on consumed $\underline{1}$. The structural assignment rests on n.m.r. criteria as used above. Here the major part of the azomethine ylide $\underline{2}$ has time to isomerise to $\underline{3}$ before being captured by the Schiff base.

The aziridine $\frac{1}{2}$ reacted with an excess of <u>phenylisocyanate</u> when heated for 24 hrs. at 120° to give 73% of the adduct $\frac{12}{12}$ (m.p. $148-150^{\circ}$). Besides the imidazolone-(4) structure $\frac{12}{2}$, a cyclic urea $\frac{13}{2}$ could conceivably appear as product of an electrophilic attack on the aziridine nitrogen followed by CN ring scission. $\frac{13}{2}$ can be discarded because the t-values of the ring protons differ greatly (τ 3.90 for 2-H and 4.94 for 4-H in $\frac{12}{2}$). The i.r. frequency of 1717 cm⁻¹ is that of a r-lactam. Moreover, the aziridine $\frac{1}{2}$ was quantitatively recovered after treatment with phenylisocyanate for 16 days at 20° . This suggests that $\frac{2}{2}$ and not $\frac{1}{2}$ was the reactant; $t_{1/2}$ for the process $\frac{1}{2} \longrightarrow \frac{2}{2}$ amounts to 8000 days at 20° (7).

The reaction of $\frac{1}{2}$ with benzonitrile (24 hrs. 120°) produced on oily mixture of products which was dehydrogenated by chloranil in boiling xylene to the imidazole derivative $\frac{14}{22}$ (31%, m.p. 149-151°). Alkaline hydrolysis and thermal decarboxylation (210°, 89%) afforded 4-phenyl-1-(4-methoxyphenyl)imidazole ($\frac{15}{22}$, m.p. 105-106°), identical with an independently synthesised specimen.

No.6

We chose methyl dithiobenzoate as an example with CS double bond. After 24 hrs. at 120° $\frac{1}{2}$ was converted to a mixture of the adducts $\frac{16}{2} - \frac{19}{2}$ in 63% yield; n.m.r. analysis provided the ratio 40:12:34:14. Thus, the cycloaddition furnished all four possible racemates for a thiazolidine with three asymmetric centres. All four isomers were separated by t.l.c. on silicagel. The assignment of configuration to $\frac{16}{2} - \frac{19}{2}$ by n.m.r. criteria is unfortunately not without ambiguity in the present case.

REFERENCES

- (1) J.W. Lown, G. Dallas, and T.W. Maloney, <u>Canad.J.Chem.</u>, <u>47</u>, 3557 (1969).
- (2) J.W. Lown, J.P. Moser, and R. Westwood, <u>Canad.J.Chem.</u>, <u>47</u>, 4335 (1969).
- (3) J.W. Lown, R.K. Smalley, G. Dallas, and T.W. Maloney, <u>Canad.J.Chem.</u>, <u>48</u>, 89 (1970).
- (4) G. Dallas, J.W. Lown, and J.P. Moser, Chem.Comm., 1970, 278.
- (5) J.W. Lown and J.P. Moser, <u>Canad.J.Chem.</u>, <u>48</u>, 2227 (1970).
- (6) R. Huisgen, W. Scheer, and H. Huber, <u>J.Amer.Chem.Soc.</u>, <u>89</u>, 1753 (1967).
- (7) R. Huisgen, W. Scheer, and H. Mäder, Ang. Chem. Internat. Edn., 8, 602 (1969).
- (8) All new adducts gave satisfactory C,H,N analyses.
- (9) R. Huisgen, W. Scheer, H. Mäder, and E. Brunn, <u>Ang.Chem.Internat.Edn.</u>, <u>8</u>, 604 (1969).
- (10) N.m.r. spectra in $CDCl_3$ on Varian A-60 with TMS as internal standard.